
Learning MIPS & SPIM

•  MIPS assembly is a low-level programming language
•  The best way to learn any programming language is to write

code
•  We will get you started by going through a few example

programs and explaining the key concepts
•  Tip: Start by copying existing programs and modifying them

incrementally making sure you understand the behavior at
each step

•  Tip: The best way to understand and remember a construct or
keyword is to experiment with it in code, not by reading
about it

MIPS Assembly Code Layout
•  Typical Program Layout

 .text #code section

 .globl main #starting point: must be global

main:

 # user program code

 .data #data section

 # user program data

MIPS Memory Usage as viewed in SPIM

reserved
0x00000000

0x00400000

0x10010000

0x7fffeffc
0x7fffffff

text segment
(instructions)

data segment

stack segment

reserved

MIPS Assembler Directives
•  Top-level Directives:

•  .text
•  indicates that following items are stored in the user text segment, typically instructions

•  .data
•  indicates that following data items are stored in the data segment

•  .globl sym
•  declare that symbol sym is global and can be referenced from other files

MIPS Assembler Directives
•  Common Data Definitions:

•  .word w1, …, wn
•  store n 32-bit quantities in successive memory words

•  .half h1, …, hn
•  store n 16-bit quantities in successive memory halfwords

•  .byte b1, …, bn
•  store n 8-bit quantities in successive memory bytes

•  .ascii str
•  store the string in memory but do not null-terminate it

•  strings are represented in double-quotes “str”
•  special characters, eg. \n, \t, follow C convention

•  .asciiz str
•  store the string in memory and null-terminate it

MIPS Assembler Directives
•  Common Data Definitions:

•  .float f1, …, fn
•  store n floating point single precision numbers in successive memory locations

•  .double d1, …, dn
•  store n floating point double precision numbers in successive memory locations

•  .space n
•  reserves n successive bytes of space

•  .align n
•  align the next datum on a 2n byte boundary.
•  For example, .align 2 aligns next value on a word boundary.
•  .align 0 turns off automatic alignment of .half, .word, etc. till next .data directive

0 zero constant 0

1 at reserved for assembler

2 v0 results from callee

3 v1 returned to caller

4 a0 arguments to callee

5 a1 from caller: caller saves

6 a2

7 a3

8 t0 temporary

. . .

15 t7

MIPS: Software Conventions
for Registers

16 s0 callee saves

. . .

23 s7

24 t8 temporary (cont’d)

25 t9

26 k0 reserved for OS kernel

27 k1

28 gp pointer to global area

29 sp stack pointer

30 fp frame pointer

31   ra return Address

 caller saves

Pseudoinstructions

•  Pseudoinstructions do not correspond to real MIPS
instructions.

•  Instead, the assembler, would translate
pseudoinstructions to real instructions (one on more
instructions).

•  Pseudoinstructions not only make it easier to
program, it can also add clarity to the program, by
making the intention of the programmer more clear.

Pseudoinstructions

•  Here's a list of useful pseudo-instructions.
•  mov $t0, $t1: Copy contents of register t1 to register t0.
•  li $s0, immed: Load immediate into to register s0.

•  The way this is translated depends on whether immed is 16 bits or 32
bits.

•  la $s0, addr: Load address into to register s0.
•  lw $t0, address: Load a word at address into register t0
•  Similar pseudo-instructions exist for sw, etc.

Pseudoinstructions
•  Translating Some Pseudoinstructions
•  mov $t0, $s0 addi $t0, $s0, 0
•  li $rs, small addi $rs, $zero, small
•  li $rs, big lui $rs, upper(big) ori $rs, $rs, lower(big)
•  la $rs, big lui $rs, upper(big) ori $rs, $rs, lower(big)

•  where small means a quantity that can be represented using 16 bits, and
big means a 32 bit quantity. upper(big) is the upper 16 bits of a 32 bit
quantity. lower(big) is the lower 16 bits of the 32 bit quantity.

•  upper(big) and lower(big) are not real instructions. If you were to do the
translation, you'd have to break it up yourself to figure out those quantities.

Pseudoinstructions

•  As you look through the branch instructions,
you see beq and bne, but not bge (branch on
greater than or equal), bgt (branch on greater
than), ble (branch on less than or equal), blt
(branch on less than). There are no branch
instructions for relational operators!

Pseudoinstructions
•  Here's the table for translating pseudoinstructions.
•  bge $t0, $s0, LABEL slt $at, $t0, $s0

 beq $at, $zero, LABEL
•  bgt $t0, $s0, LABEL slt $at, $s0, $t0

 bne $at, $zero, LABEL
•  ble $t0, $s0, LABEL slt $at, $s0, $t0

 beq $at, $zero, LABEL
•  blt $t0, $s0, LABEL slt $at, $t0, $s0

 bne $at, $zero, LABEL

System Calls
•  System Calls (syscall)

•  OS-like services

•  Method
•  Load system call code into register $v0
•  Load arguments into registers $a0…$a3
•  call system with SPIM instruction syscall
•  After call, return value is in register $v0

•  Frequently used system calls

System Call Codes

Service Code (put in $v0) Arguments Result

print_int 1 $a0=integer

print_float 2 $f12=float

print_double 3 $f12=double

print_string 4 $a0=addr. of string

read_int 5 int in $v0

read_float 6 float in $f0

read_double 7 double in $f0

read_string 8 $a0=buffer, $a1=length

sbrk 9 $a0=amount addr in $v0

exit 10

QtSPIM
•  QtSpim is software that will help you to simulate the execution

of MIPS assembly programs.
•  It does a context and syntax check while loading an assembly

program.
•  In addition, it adds in necessary overhead instructions as

needed, and updates register and memory content as each
instruction is executed.

•  Download the source from the SourceForge.org link at:
http://pages.cs.wisc.edu/~larus/spim.html

•  Alternatively, you can go directly to:
http://sourceforge.net/projects/spimsimulator/files/

•  Versions for Windows, Linux, and Macs are all available

QtSPIM
•  QtSPIM window is divided into different sections:
1.  The Register tabs display the content of all registers.
2.  Buttons across the top are used to load and run a simulation

•  Functionality is described in Figure 2.
3.  The Text tab displays the MIPS instructions loaded into

memory to be executed.
•  From left-to-right, the memory address of an instruction,

the contents of the address in hex, the actual MIPS instructions
where register numbers are used, the MIPS assembly that you
wrote, and any comments you made in your code are displayed.

4.  The Data tab displays memory addresses and their values in
the data and stack segments of the memory.

5.  The Information Console lists the actions performed by the simulator.

QtSPIM Program Example

•  A Simple Program
#sample example 'add two numbers’

.text # text section

.globl main # call main by SPIM

main: la $t0, value # load address ‘value’ into $t0
 lw $t1, 0($t0) # load word 0(value) into $t1
 lw $t2, 4($t0) # load word 4(value) into $t2
 add $t3, $t1, $t2 # add two numbers into $t3

 sw $t3, 8($t0) # store word $t3 into 8($t0)

.data # data section
value: .word 10, 20, 0 # data for addition

QtSPIM Example Program

Program adds 10 and 11

 .text # text section

 .globl main # call main by SPIM

main:

 ori $8,$0,0xA # load “10" into register 8

 ori $9,$0,0xB # load “11" into register 9

 add $10,$8,$9 # add registers 8 and 9, put result

 # in register 10

QtSPIM Example Program: swap2memoryWords.asm
Program to swap two memory words

 .data # load data
 .word 7
 .word 3

 .text
 .globl main

main:
 lui $s0, 0x1001 # load data area start address 0x10010000
 lw $s1, 0($s0)
 lw $s2, 4($s0)
 sw $s2, 0($s0)
 sw $s1, 4($s0)

QtSPIM Example Program: procCallsProg2.asm

 .text
 .globl main
main:

 la $a0, array
 addi $a1, $0, 0

 addi $sp, $sp, -4
 sw $ra, 0($sp)

 jal swap

 lw $ra, 0($sp)
 addi $sp, $sp, 4

 jr $ra

equivalent C code:

swap(int v[], int k)

{
int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;
}
swap contents of elements $a1
and $a1 + 1 of the array that
starts at $a0
swap: add $t1, $a1, $a1

 add $t1, $t1, $t1
 add $t1, $a0, $t1
 lw $t0, 0($t1)
 lw $t2, 4($t1)
 sw $t2, 0($t1)
 sw $t0, 4($t1)
 jr $ra

.data
array: .word 5, 4, 3, 2, 1

Procedure call to swap two array words

save return
address $ra
in stack

jump and
link to swap

restore
return
address

jump to $ra

load para-
meters for
swap

QtSPIM Example Program: systemCalls.asm

Enter two integers in
console window

Sum is displayed

.text

.globl main

main:

 la $t0, value

 li $v0, 5

 syscall

 sw $v0, 0($t0)

 li $v0, 5

 syscall

 sw $v0, 4($t0)

 lw $t1, 0($t0)
 lw $t2, 4($t0)

 add $t3, $t1, $t2

 sw $t3, 8($t0)

 li $v0, 4

 la $a0, msg1

 syscall

 li $v0, 1
 move $a0, $t3

 syscall

 li $v0, 10

 syscall

.data

value: .word 0, 0, 0

msg1: .asciiz “Sum = “

system call code
for read_int

result returned by call

argument to print_string call

system call code
for print_string

system call code
for print_int

argument to print_int call

system call code
for exit

