Learning MIPS & SPIM

MIPS assembly is a low-level programming language

The best way to learn any programming language is to write
code

We will get you started by going through a few example
programs and explaining the key concepts

Tip: Start by copying existing programs and modifying them
incrementally making sure you understand the behavior at
each step

Tip: The best way to understand and remember a construct or
keyword 1s to experiment with it in code, not by reading
about 1t

HEEN
Memory
[|
CPU Coprocessor 1 (FPU)
Reaqisters Reaqisters
$0 $0
. .
$21 $31
Arnthmetic Multiply
unit divide
Arithmetic
| Hi | Lo

Registers

Coprocessor O (fraps and memory)

BadVAddr

Cause

Status

EPC

MIPS Assembly Code Layout

» Typical Program Layout

text #code section

.globl main #starting point: must be global
main:

user program code

.data #data section

user program data

MIPS Memory Usage as viewed in SPIM

OXZfffftf [recerved
0X7fffe-ﬁ-'c 3:3:3:3:3:3:3:reserve-.i:3:3:3:3:3:3:
stack segment
'
1
data segment
0x10010000
text segment
(instructions)
OX00400000fﬁﬁ?ﬁﬁﬁﬁjﬁﬁﬁﬁﬁﬁffﬁ
| resened
0x00000000 Lo

MIPS Assembler Directives

» Top-level Directives:

o .text

 indicates that following items are stored in the user text segment, typically instructions

o _data

* indicates that following data items are stored in the data segment

+ .globl sym

* declare that symbol sym is global and can be referenced from other files

MIPS Assembler Directives

e Common Data Definitions:

word wl, ..., wn
 store n 32-bit quantities in successive memory words
 .half hl,...,hn
 store n 16-bit quantities in successive memory halfwords
* .byte bl, ...,bn
 store n 8-bit quantities in successive memory bytes

e .ascil str

* store the string in memory but do not null-terminate it
 strings are represented in double-quotes “str”
» special characters, eg. \n, \t, follow C convention

e .ascliz str

* store the string in memory and null-terminate it

MIPS Assembler Directives

e Common Data Definitions:

float f1, ..., fn
 store n floating point single precision numbers in successive memory locations
.double dl, ..., dn

 store n floating point double precision numbers in successive memory locations

.space n
* reserves n successive bytes of space

e .align n

* align the next datum on a 2" byte boundary.

» For example, .align 2 aligns next value on a word boundary.

« .align 0 turns off automatic alignment of .half, .word, etc. till next .data directive

MIPS: Software Conventions
for Registers

;;05:5:5:5ze:roz:constzan:t:(lzz:5:5:5:5:5:5:5:5:5:5:;;;;5; 16 s0 callee saves

v0 results from callee 23 s7

v1 returned to caller 24 t8 temporary (cont’d)

a0 arguments to callee 25 19

from caller: caller saves

a3 28 gp pointer to global area

olN o o BNl w N
Q0
—_—

t0 temporary 29 sp stack pointer

30 fp frame pointer

Pseudoinstructions

* Pseudoinstructions do not correspond to real MIPS
instructions.

* Instead, the assembler, would translate
pseudoinstructions to real instructions (one on more
instructions).

* Pseudoinstructions not only make 1t easier to
program, 1t can also add clarity to the program, by
making the intention of the programmer more clear.

Pseudoinstructions

Here's a list of useful pseudo-instructions.
mov $t0, $t1: Copy contents of register t1 to register t0.

li $s0, immed: Load immediate into to register s0.

» The way this is translated depends on whether immed is 16 bits or 32
bits.

la $s0, addr: Load address into to register s0.
Iw $t0, address: Load a word at address into register t0
Similar pseudo-instructions exist for sw, etc.

Pseudoinstructions

Translating Some Pseudoinstructions

mov $t0, $s0 addi $t0, $s0, 0

li $rs, small addi $rs, $zero, small

li $rs, big lui $rs, upper(big) ori $rs, $rs, lower(big)
la Srs, big lui $rs, upper(big) ori $rs, $rs, lower(big)

where small means a quantity that can be represented using 16 bits, and
big means a 32 bit quantity. upper(big) is the upper 16 bits of a 32 bit
quantity. lower(big) is the lower 16 bits of the 32 bit quantity.

upper(big) and lower(big) are not real instructions. If you were to do the
translation, you'd have to break it up yourself to figure out those quantities.

Pseudoinstructions

* As you look through the branch instructions,
you see beq and bne, but not bge (branch on
greater than or equal), bgt (branch on greater
than), ble (branch on less than or equal), blt
(branch on less than). There are no branch
instructions for relational operators!

Pseudoinstructions

Here's the table for translating pseudoinstructions.

bge $t0, $s0, LABEL slt $at, $t0, $s0
beq $at, $zero, LABEL

bgt $t0, $s0, LABEL slt $at, $s0, $t0
bne $at, $zero, LABEL

ble $t0, $s0, LABEL slt $Sat, $s0, $t0
beq $at, $zero, LABEL

blt $t0, $s0, LABEL slt $at, $t0, $s0
bne $at, $zero, LABEL

System Calls

« System Calls (syscall)

e (S-like services

e Method

» Load system call code into register $v0
» Load arguments into registers $a0...$a3
 call system with SPIM instruction syscall

» After call, return value is in register $v0

* Frequently used system calls

Service Code($v0) Arg Result
Print_int 1 $a1
Print_string 4 $a0
Read_int 5 $vO0

System Call Codes

Service Code (put in $v0) | Arguments Result
print_int 1 $a0=integer

print_float 2 $f12=float

print_double 3 $f12=double

print_string 4 $a0=addr. of string

read int 5 int in $vO
read float 6 float in $0
read double 7 double in $£0
read string 8 $a0=buffer, $al=length

sbrk 9 $a0=amount addr in $v0

exit

[E—
o

QtSPIM

QtSpim is software that will help you to simulate the execution
of MIPS assembly programs.

It does a context and syntax check while loading an assembly
program.

In addition, it adds 1n necessary overhead instructions as
needed, and updates register and memory content as each
instruction is executed.

Download the source from the SourceForge.org link at:
http://pages.cs.wisc.edu/~larus/spim.html

Alternatively, you can go directly to:
http://sourceforge.net/projects/spimsimulator/files/

Versions for Windows, Linux, and Macs are all available

QtSPIM

e QtSPIM window is divided into different sections:
1. The Register tabs display the content of all registers.

2. Buttons across the top are used to load and run a simulation
* Functionality is described in Figure 2.

3. The Text tab displays the MIPS instructions loaded into
memory to be executed.
* From left-to-right, the memory address of an instruction,
the contents of the address in hex, the actual MIPS instructions
where register numbers are used, the MIPS assembly that you
wrote, and any comments you made in your code are displayed.
4. The Data tab displays memory addresses and their values in
the data and stack segments of the memory.

5. The Information Console lists the actions performed by the simulator.

Reinitialize |[New._. print register] [Reinitialize | [Pause, stop simulation
and load file | |data, etc. content simulation | | (will likely not use)

\
New... Clear Run Step through
Load file | | [Save log registers | | |simulation) simulation
QtSpim
v v Yy v v L])
E & "Hd 9 a #H b Il @ S5 7]
FP Regs l Int Regs [10] \ Data = Text }
Int Regs (10} 00 r Text
»c =0 User Tox: Segnent [00400D00]..[00440000)
=PC =0 00400000 B8La40000 1w $4, 0(329) ; 183: 1w a0 ¢r$sp) # arge
Cause -0 00400004] 27220004 addiu $5, 329, ¢ i 184; addiu Jel $sp 4 # argv .
BadvAddr = 0 00400008] 24c€0004 addiu $6, §5, & ; 185: addiu §e2 $al 4 # envp Simulator
Status = B05371664 0040000c] OOD42080 w1l §2, §&, 2 ; 186: g1l Sv0 5a0 2
00400010) 00cZ3021 addu S6, §6, §2 : 187: accu Sal Saz Svo
i a0 g:i:ggl; gséggg:; jal 0x00400024¢ [main) i :z;; jal mein g_eneraled wde
4 1 1 it
w -0 0040001c] 34020002 ::g $2, 50, 10 f :91: x’?svo 10 (Ignore)
00400020) OOOOOOOC syscall : 192: syscall ¥ syscall 10 (exit)
RO ¥0) = 0 00400024] 3c012001 1lui $1, €097 7 15: 1w Js0, u # load loop couwacer into $s¢
Rl (8t) = 0 00400028] Bc300000 1w $16, 0(31)
RZ ([v0) = O 0040002c] 30012001 1lui $1, 4097 [X] ; 16: la $t0, X ¥ load the addross of X into §t0
R3 [vi) = 0 00400030] 34280004 ori $8, $1, & [X)
e a0) = 1 00400034) 02208824 and 317, 317, SO ; L7: and 381, $81, Szero # clear $s1 aka tenp sum
RS [81) = 2147483204 00400038] BJ090000 1w $9, O(30) i 18: Iw gti, 0r$e0) # load the next value of x
RS [@82] = 2147483212 0040003c] 02296620 add $17, §17, §9 i 19: add §8l, §$s1, $t1 # add it to the rusniag sum
R7 fa3) = 0 00400040] 21080004 addi SB, S8, & ; 20: addi St0, $t0, 4 # increment to the next address
7] ¢0) =0 00400044) 2210111 addi S16, S16, -1 : 21: acdl Ss0, $80, -1 # decrement the loop counter
R9 [¢1] =0 00400043] 141011Ic Dbae 30, 316, -16 [lOOp-0x00400048)
R10 [t2) = O 0040004c] 30012001 lui $1, 4097 1 231 ow $ai, SUM # store the final total
R11 [t3) = O 00400050] ac310018 sw $17, 24(§1)
R12 [t4] = 0 00400054] 34020002 ori $2, 50, 10 3 25: 11 $vo, 10 ¥ specall to exit cleanly from main only
R13 [¢5) = 0 00400053] O0COCOOC syscall ; 26: syscall # this ends execution
R14 (t6) =0
= R Sk User code: (a) your comments appear, (b) register name, number appear
17 1 0
s :2 :n
S
sd) =
w1 () - 0 MIPS code
= = - -
3 (81) - 0 Content of integer registers
e - -)
a5 (i) - 0 - Can view as binary, hex, or decimal
R27 (K1) = 0 ¥~ Do not need to consider floating point
R28 [gp) - 58453224 -
R29 (ep] - 2147483200 (FP) register tab
R30 [s8) = 0 =
®31 (ra) =0 - PC value also included here

Memory and registers cleared

Loaded: /var/folders/6r/cSy92qs54cg28inhl421214m0000gn/T/qt_temp.L17044
SPIM Version .05 of January 9, 2011

Copyright 1990-2010, James R. Larus.

All Rights Reserved.

QtSPIM Program Example

* A Simple Program

#sample example 'add two numbers’

. text # text section

.globl main # call main by SPIM

main: la $t0, wvalue # load address ‘value’ into $tO
lw $t1, 0($tO0) # load word O (value) into $tl
lw $t2, 4($t0) # load word 4 (value) into $t2
add $t3, tl, St2 # add two numbers into $t3
sw $t3, 8($t0) # store word $t3 into 8($t0)

.data # data section

data for addition)

value: .word 10, 20, O

+H=

QtSPIM Example Program

Program adds 10 and 11

.text # text section
.globl main # call main by SPIM
main:
ori $8,5$0, O0xA # load “10" into register 8
ori $9,50,0xB # load “11" into register 9
add $10,$8,59 # add registers 8 and 9, put result
in register 10

QtSPIM Example Program: swap2memoryWords.asm

Program to swap two memory words

.data # load data
.word 7/
.word 3

.Lext
.globl main

main:
lui $s0, 0x1001 # load data area start address 0x10010000
1w S$sl1, 0(Ss0)

1w $s2, 4($s0)
sw $s2, 0($s0)
sw $sl, 4(S$s0)

QtSPIM Example Program: procCallsProg2.asm)>

Procedure call to swap two array words

.Lext
.globl main
main:
la $al0, array
addi Sal, S0, O
load para-
meters for
swap addi Ssp, $sp, -4
save return swW Sra, 0(Ssp)
address $ra {
in stack
jump and { Jal swap
link to swap
restore " »ra, 0(3sp)
return { addi Ssp, S$sp, 4
address -
r ra
jumpto$ra{j
equivalent C code:)

swap (int v[],

int k)

H H FH H H =

}

int temp;

temp = v[k];
vik] = v[k+1l];
vik+l] = temp;

swap contents of elements $al

and $al + 1 of the array that
starts at $a0

swap:

.data
array:

)

add
add
add
1w
1w
SW
SW
Jr

.word b,

Stl,
$t11
$tll
Sto,
s$t2,
$t2,
Sto,
Sra

4,

Sal,
s$tl, stl
$a0, sStl
0(Stl)

Sal

QtSPIM Example Program: systemCalls.asm)

Enter two integers in
console window

Sum 1is displayed
.text

.globl main

main:
la $t0, wvalue
system call code
11 $v0, 5 for read_int
syscall
sw Sv0, 0($t0)
result returned by call
1i sv0, 5
syscall
sw Sv0, 4($t0)

1w $tl, 0(St0)
lw St2, 4($t0)
add $t3, S$tl, s$t2
sw $t3, 8(st0)

system call code
for print_string

11 SvO0, 4
la $a0, msgl
syscall
argument to print_string call
1i svO, 1
move $aQ, $t3 system call code
syscall for print_int
argument to print_int call
1i s$vO0, 10
syscall — ?grst;e)g?c call code
.data
value: .word 0, 0, O

msgl: .asciiz “Sum =)

